3.20.4 \(\int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)} \, dx\) [1904]

3.20.4.1 Optimal result
3.20.4.2 Mathematica [A] (verified)
3.20.4.3 Rubi [A] (verified)
3.20.4.4 Maple [A] (verified)
3.20.4.5 Fricas [A] (verification not implemented)
3.20.4.6 Sympy [B] (verification not implemented)
3.20.4.7 Maxima [A] (verification not implemented)
3.20.4.8 Giac [A] (verification not implemented)
3.20.4.9 Mupad [B] (verification not implemented)

3.20.4.1 Optimal result

Integrand size = 24, antiderivative size = 93 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)} \, dx=\frac {7 \sqrt {1-2 x}}{6 (2+3 x)^2}+\frac {65 \sqrt {1-2 x}}{6 (2+3 x)}+\frac {2243 \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{3 \sqrt {21}}-22 \sqrt {55} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

output
2243/63*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)-22*arctanh(1/11*55^(1 
/2)*(1-2*x)^(1/2))*55^(1/2)+7/6*(1-2*x)^(1/2)/(2+3*x)^2+65/6*(1-2*x)^(1/2) 
/(2+3*x)
 
3.20.4.2 Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.84 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)} \, dx=\frac {\sqrt {1-2 x} (137+195 x)}{6 (2+3 x)^2}+\frac {2243 \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{3 \sqrt {21}}-22 \sqrt {55} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

input
Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^3*(3 + 5*x)),x]
 
output
(Sqrt[1 - 2*x]*(137 + 195*x))/(6*(2 + 3*x)^2) + (2243*ArcTanh[Sqrt[3/7]*Sq 
rt[1 - 2*x]])/(3*Sqrt[21]) - 22*Sqrt[55]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]]
 
3.20.4.3 Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.01, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {109, 168, 27, 174, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{3/2}}{(3 x+2)^3 (5 x+3)} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {1}{6} \int \frac {87-97 x}{\sqrt {1-2 x} (3 x+2)^2 (5 x+3)}dx+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{6} \left (\frac {1}{7} \int \frac {7 (531-325 x)}{\sqrt {1-2 x} (3 x+2) (5 x+3)}dx+\frac {65 \sqrt {1-2 x}}{3 x+2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \left (\int \frac {531-325 x}{\sqrt {1-2 x} (3 x+2) (5 x+3)}dx+\frac {65 \sqrt {1-2 x}}{3 x+2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {1}{6} \left (-2243 \int \frac {1}{\sqrt {1-2 x} (3 x+2)}dx+3630 \int \frac {1}{\sqrt {1-2 x} (5 x+3)}dx+\frac {65 \sqrt {1-2 x}}{3 x+2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{6} \left (-3630 \int \frac {1}{\frac {11}{2}-\frac {5}{2} (1-2 x)}d\sqrt {1-2 x}+2243 \int \frac {1}{\frac {7}{2}-\frac {3}{2} (1-2 x)}d\sqrt {1-2 x}+\frac {65 \sqrt {1-2 x}}{3 x+2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{6} \left (\frac {4486 \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{\sqrt {21}}-132 \sqrt {55} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )+\frac {65 \sqrt {1-2 x}}{3 x+2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2}\)

input
Int[(1 - 2*x)^(3/2)/((2 + 3*x)^3*(3 + 5*x)),x]
 
output
(7*Sqrt[1 - 2*x])/(6*(2 + 3*x)^2) + ((65*Sqrt[1 - 2*x])/(2 + 3*x) + (4486* 
ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/Sqrt[21] - 132*Sqrt[55]*ArcTanh[Sqrt[5/1 
1]*Sqrt[1 - 2*x]])/6
 

3.20.4.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 
3.20.4.4 Maple [A] (verified)

Time = 3.13 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.69

method result size
risch \(-\frac {390 x^{2}+79 x -137}{6 \left (2+3 x \right )^{2} \sqrt {1-2 x}}+\frac {2243 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{63}-22 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}\) \(64\)
derivativedivides \(-22 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}-\frac {18 \left (\frac {65 \left (1-2 x \right )^{\frac {3}{2}}}{18}-\frac {469 \sqrt {1-2 x}}{54}\right )}{\left (-4-6 x \right )^{2}}+\frac {2243 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{63}\) \(66\)
default \(-22 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}-\frac {18 \left (\frac {65 \left (1-2 x \right )^{\frac {3}{2}}}{18}-\frac {469 \sqrt {1-2 x}}{54}\right )}{\left (-4-6 x \right )^{2}}+\frac {2243 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{63}\) \(66\)
pseudoelliptic \(\frac {4486 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \left (2+3 x \right )^{2} \sqrt {21}-2772 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \left (2+3 x \right )^{2} \sqrt {55}+21 \sqrt {1-2 x}\, \left (195 x +137\right )}{126 \left (2+3 x \right )^{2}}\) \(75\)
trager \(\frac {\left (195 x +137\right ) \sqrt {1-2 x}}{6 \left (2+3 x \right )^{2}}+11 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) \ln \left (\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) x +55 \sqrt {1-2 x}-8 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right )}{3+5 x}\right )-\frac {2243 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) \ln \left (\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) x -5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right )+21 \sqrt {1-2 x}}{2+3 x}\right )}{126}\) \(111\)

input
int((1-2*x)^(3/2)/(2+3*x)^3/(3+5*x),x,method=_RETURNVERBOSE)
 
output
-1/6*(390*x^2+79*x-137)/(2+3*x)^2/(1-2*x)^(1/2)+2243/63*arctanh(1/7*21^(1/ 
2)*(1-2*x)^(1/2))*21^(1/2)-22*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2 
)
 
3.20.4.5 Fricas [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.18 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)} \, dx=\frac {1386 \, \sqrt {55} {\left (9 \, x^{2} + 12 \, x + 4\right )} \log \left (\frac {5 \, x + \sqrt {55} \sqrt {-2 \, x + 1} - 8}{5 \, x + 3}\right ) + 2243 \, \sqrt {21} {\left (9 \, x^{2} + 12 \, x + 4\right )} \log \left (\frac {3 \, x - \sqrt {21} \sqrt {-2 \, x + 1} - 5}{3 \, x + 2}\right ) + 21 \, {\left (195 \, x + 137\right )} \sqrt {-2 \, x + 1}}{126 \, {\left (9 \, x^{2} + 12 \, x + 4\right )}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^3/(3+5*x),x, algorithm="fricas")
 
output
1/126*(1386*sqrt(55)*(9*x^2 + 12*x + 4)*log((5*x + sqrt(55)*sqrt(-2*x + 1) 
 - 8)/(5*x + 3)) + 2243*sqrt(21)*(9*x^2 + 12*x + 4)*log((3*x - sqrt(21)*sq 
rt(-2*x + 1) - 5)/(3*x + 2)) + 21*(195*x + 137)*sqrt(-2*x + 1))/(9*x^2 + 1 
2*x + 4)
 
3.20.4.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 168 vs. \(2 (82) = 164\).

Time = 38.48 (sec) , antiderivative size = 371, normalized size of antiderivative = 3.99 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)} \, dx=- \frac {121 \sqrt {21} \left (\log {\left (\sqrt {1 - 2 x} - \frac {\sqrt {21}}{3} \right )} - \log {\left (\sqrt {1 - 2 x} + \frac {\sqrt {21}}{3} \right )}\right )}{7} + 11 \sqrt {55} \left (\log {\left (\sqrt {1 - 2 x} - \frac {\sqrt {55}}{5} \right )} - \log {\left (\sqrt {1 - 2 x} + \frac {\sqrt {55}}{5} \right )}\right ) + \frac {868 \left (\begin {cases} \frac {\sqrt {21} \left (- \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{4} + \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{4} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )}\right )}{147} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right )}{3} - \frac {392 \left (\begin {cases} \frac {\sqrt {21} \cdot \left (\frac {3 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{16} - \frac {3 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{16} + \frac {3}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} + \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )^{2}} + \frac {3}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )} - \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )^{2}}\right )}{1029} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right )}{3} \]

input
integrate((1-2*x)**(3/2)/(2+3*x)**3/(3+5*x),x)
 
output
-121*sqrt(21)*(log(sqrt(1 - 2*x) - sqrt(21)/3) - log(sqrt(1 - 2*x) + sqrt( 
21)/3))/7 + 11*sqrt(55)*(log(sqrt(1 - 2*x) - sqrt(55)/5) - log(sqrt(1 - 2* 
x) + sqrt(55)/5)) + 868*Piecewise((sqrt(21)*(-log(sqrt(21)*sqrt(1 - 2*x)/7 
 - 1)/4 + log(sqrt(21)*sqrt(1 - 2*x)/7 + 1)/4 - 1/(4*(sqrt(21)*sqrt(1 - 2* 
x)/7 + 1)) - 1/(4*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)))/147, (sqrt(1 - 2*x) > - 
sqrt(21)/3) & (sqrt(1 - 2*x) < sqrt(21)/3)))/3 - 392*Piecewise((sqrt(21)*( 
3*log(sqrt(21)*sqrt(1 - 2*x)/7 - 1)/16 - 3*log(sqrt(21)*sqrt(1 - 2*x)/7 + 
1)/16 + 3/(16*(sqrt(21)*sqrt(1 - 2*x)/7 + 1)) + 1/(16*(sqrt(21)*sqrt(1 - 2 
*x)/7 + 1)**2) + 3/(16*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)) - 1/(16*(sqrt(21)*s 
qrt(1 - 2*x)/7 - 1)**2))/1029, (sqrt(1 - 2*x) > -sqrt(21)/3) & (sqrt(1 - 2 
*x) < sqrt(21)/3)))/3
 
3.20.4.7 Maxima [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.18 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)} \, dx=11 \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) - \frac {2243}{126} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) - \frac {195 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 469 \, \sqrt {-2 \, x + 1}}{3 \, {\left (9 \, {\left (2 \, x - 1\right )}^{2} + 84 \, x + 7\right )}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^3/(3+5*x),x, algorithm="maxima")
 
output
11*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1 
))) - 2243/126*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*s 
qrt(-2*x + 1))) - 1/3*(195*(-2*x + 1)^(3/2) - 469*sqrt(-2*x + 1))/(9*(2*x 
- 1)^2 + 84*x + 7)
 
3.20.4.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.15 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)} \, dx=11 \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {2243}{126} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {195 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 469 \, \sqrt {-2 \, x + 1}}{12 \, {\left (3 \, x + 2\right )}^{2}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^3/(3+5*x),x, algorithm="giac")
 
output
11*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqr 
t(-2*x + 1))) - 2243/126*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 
1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 1/12*(195*(-2*x + 1)^(3/2) - 469*sqrt 
(-2*x + 1))/(3*x + 2)^2
 
3.20.4.9 Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.76 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)} \, dx=\frac {2243\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{63}-22\,\sqrt {55}\,\mathrm {atanh}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}}{11}\right )+\frac {\frac {469\,\sqrt {1-2\,x}}{27}-\frac {65\,{\left (1-2\,x\right )}^{3/2}}{9}}{\frac {28\,x}{3}+{\left (2\,x-1\right )}^2+\frac {7}{9}} \]

input
int((1 - 2*x)^(3/2)/((3*x + 2)^3*(5*x + 3)),x)
 
output
(2243*21^(1/2)*atanh((21^(1/2)*(1 - 2*x)^(1/2))/7))/63 - 22*55^(1/2)*atanh 
((55^(1/2)*(1 - 2*x)^(1/2))/11) + ((469*(1 - 2*x)^(1/2))/27 - (65*(1 - 2*x 
)^(3/2))/9)/((28*x)/3 + (2*x - 1)^2 + 7/9)